文章内容是3篇关于「初中数学试讲教案优秀」的教学学习范文供大家借鉴参考,希望能帮助大家在教学学习中写初中数学试讲教案相关文档的时候提供一个有效的参考,助你解决相关写作问题。
no.1 初中数学试讲教案优秀-第1篇
【教学目标】
1、掌握多边形的内角和的计算方法,并能用内角和知识解决一些简单的问题。
2、经历探索多边形内角和计算公式的过程,体会如何探索研究问题。
3、通过将多边形"分割"为三角形的过程体验,初步认识"转化"的数学思想。
【教学重点与教学难点】
1、重点:多边形的内角和公式。
2、难点:多边形内角和的推导。
3、关键:多边形"分割"为三角形。
【教具准备】
三角板、卡纸
【教学过程】
一、创设情景,揭示问题
1、在一次数学基础知识抢答赛中,老师出了这么一个问题,一个五边形的所有角相加等于多少度?一个学生马上能回答,你们能吗?
2、教具演示:将一个五边形沿对角线剪开,能分割成几个三角形?
你能说出五边形的内角和是多少度吗?(点题)意图:利用抢答问题和教具演示,调动学生的'学习兴趣和注意力
二、探索研究学会新知
1、回顾旧知,引出问题:
(1)三角形的内角和等于_________。外角和等于____________
(2)长方形的内角和等于_____,正方形的内角和等于__________。
2、探索四边形的内角和:
(1)学生思考,同学讨论交流。
(2)学生叙述对四边形内角和的认识(第一二组通过测量相加,第三四组通过画对角线分成两个三角形。)回顾三角形,正方形,长方形内角和,使学生对新问题进行思考与猜想。以四边形的内角和作为探索多边形的。突破口。
(3)引导学生用"分割法"探索四边形的内角和:
方法一:连接一条对角线,分成2个三角形:
180° 180°=360°
从简单的思维方式发散学生的想象力达到"分割"问题,并让学生发现问题,解决问题教学步骤教学内容备注方法二:在四边形内部任取一点,与顶点连接组成4个三角形。
180°×4-360°=360°
3、及时运用,掌握新知:
(1)一个八边形的内角和是_____________度
(2)一个多边形的内角和是720度,这个多边形是_____边形
(3)一个正五边形的每一个内角是________,那么正六边形的每个内角是_________
通过学生动手去用分割法求五(六)边形的内角和,从简单到复杂,从而归纳出n边形的内角和。
三、点例透析
运用新知例题:想一想:如果一个四边形的一组对角互补,那么另一组对角有什么关系呢?
四、应用训练强化理解
第83页练习1和2多边形内角和定理的应用
五、知识回放
课堂小结提问方式:本节课我们学习了什么?
1、多边形内角和公式。
2、多边形内角和计算是通过转化为三角形。
no.2 初中数学试讲教案优秀-第2篇
4月27日,我到新昌参加“沃洲之春”教学观摩活动,上虞阳光学校的叶柱老师上了一堂精彩的课〈认识负数〉,现将课堂实录整理如下:
一、温度中的“负数”
师:老师搜集了我国三个城市某天的最低气温资料,大家想看看吗?(课件)
杭州的最低温度是多少?
生:3摄氏度 生:39摄氏度
师:到底是多少?问题出在观察的方式上。(师介绍温度计两边的刻度摄氏度和华氏)
师:我们常用的是摄氏度。
师:我们来到了六朝古都南京最低气温是多少?生:0摄氏度
师:北京最低气温是多少?生:零下3摄氏度 。
师:你是怎么看的? 生:我发现它是在0以下,再数下3格就是零下3摄氏度。
师:北京与杭州的最低气温一样吗?为什么?
生:杭州气温是零上3摄氏度,北京是零下3摄氏度。
( 板书杭州 南京 北京的气温 )
师:你知道数学上是怎样区别零上3摄氏度与零下3摄氏度的吗?
(教学认读正3摄氏度 负3摄氏度 )
师:你能用这样的数表示其他城市的气温吗?请你用自己的神态与姿势告诉我已经准备好了
(课件展示某城市温度计 学生举学具卡片表示)
哈尔滨 -14摄氏度 漠河 -30摄氏度
海口 30 摄氏度
这时老师发现有两个同学的答案不同说:“可给我逮到了!”
师: 30摄氏度与30摄氏度哪个对?
生:这两个都对的。
师:把学具卡片放好,它只是我们的工具。
师:现在我们来做气象纪录员,看谁有快又准确。
(略)
二、海拔中的“负数”
师:不同地区气温有差别,同一地区一天中的气温也有差别,想了解吗?
(课件欣赏吐鲁番盆地的奇特自然现象)
师:吐鲁番气温变化是什么原因?是海拔。
(课件出示海拔高度示意图)
师:从图中你知道了什么?
生:珠穆朗玛峰海拔8844.43米, 吐鲁番盆地海拔低于海平面155米。
师:你能用今天所学的数表示出珠穆朗玛峰与吐鲁番盆地的海拔高度吗?
(同桌商量着互相说。)
师:你还有什么问题?
(师补充说明8844.43是最新的测量高度。)
(练习:用正负数表示各地的海拔高度。)
马耳代夫平均海拔比 海平面高1米
师:平均海拔比海平面高1米是什么意思?
师:海拔高于海平面10米有可能吗?
(练习:根据海拔高度判断各地高于海平面,还是低于海平面。)
欧洲是世界上海拔最低的洲,平均海拔高度300米。
马里亚那海沟 最深处海拔-11032米
师:你读了这句有什么感觉?
生:很高 。生:很深。
三、数学中的“负数”
师板书 3摄氏度 -3摄氏度 -155米 8844.43 米 40摄氏度 -26摄氏度
师:我们把它们的单位去掉,观察这些数你能给它们分分类吗?
生:分两类,有减号的与没减号的。
生:分3类,有减号的,有加号的,40是另一类。
师:你认为把它分在哪里合适?
师:像 3、40这样的数是“正数”;像-3、-400这样的数是“负数”。
( 出示一条数轴,在中间添上0)
师:如果这里是0,你能想到什么?
生:0的右边是负数,左边是正数。
生:0的左边是负数,0的右边是正数。
师:数学上规定0左侧的为负数,右侧的为正数。
( 生读数轴上的数)
师:读得完吗?红红的0该向哪边走呢?
师:0应该是分界线,0既不是正数也不是负数,所有的正数大于0所有的负数小于0。
师:我们回顾一下,学到了什么?
(揭示课题:认识负数 欣赏延伸《负数的历史》)
四、生活中的“负数”
师:生活中,你还在哪里见到过负数?
(工资单、电梯控制面板、)
(解决问题1、连一连 2、说一说 3、填一 填 4、想一想)
(课件出示有关刘翔比赛的资料:刘翔速度14.42秒 赛场风速为-0.4米)
师:你有疑问吗?
(师生表演来解释风速-0.4米)
no.3 初中数学试讲教案优秀-第3篇
一、课题
27.3 过三点的圆
二、教学目标
1、经历过一点、两点和不在同一直线上的三点作圆的过程。
2、。 知道过不在同一条直线上的三个点画圆的方法
3、了解三角形的外接圆和外心。
三、教学重点和难点
重点:经历过一点、两点和不在同一直线上的三点作圆的过程。
难点:知道过不在同一条直线上的三个点画圆的方法。
四、教学手段
现代课堂教学手段
五、教学方法
学生自己探索
六、教学过程设计
(一)、新授
1、过已知一个点a画圆,并考虑这样的圆有多少个?
2、过已知两个点a、b画圆,并考虑这样的圆有多少个?
3、过已知三个点a、b、c画圆,并考虑这样的圆有多少个?
让学生以小组为单位,进行探索、思考、交流后,小组选派代表向全班学生展示本小组的探索成果,在展示后,接受其他学生的质疑。
得出结论:过一点可以画无数个圆;过两点也可以画无数个圆;这些圆的圆心都在连结这两点的线段的垂直平分线上;经过不在同一直线上的三个点可以画一个圆,并且这样的圆只有一个。
不在同一直线上的三个点确定一个圆。
给出三角形外接圆的概念:经过三角形三个顶点可以作一个圆,这个圆叫作三角形的外接圆,外接圆的圆心叫做三角形的外心。
例:画已知三角形的外接圆。
让学生探索课本第15页习题1。
一起探究
八年级(一)班的学生为老区的小朋友捐款500元,准备为他们购买甲、乙 两种图书共12套。已知甲种图书每套45元,乙种图书每套40元。这些钱最多能买甲种图书多少套?
分析:带领学生完成课本第13页的表格,并完成2、3 问题,使学生清楚通过列表可以更好的分析题目,对于情景较为复杂的问题情景可采用这种分析方法解题。另外通过此题,使学生认识到:在应不等式解决实际问题时,当求出不等式的解集后,还要根据问题的实际意义确定问题的解。
(二)、小结
七、练习设计
p15习题2、3
八、教学后记
后备练习:
1、 已知一个三角形的三边长分别是 ,则这个三角形的外接圆面积等于 。
2、 如图,有a, ,c三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()
a.在ac,bc两边高线的交点处
b.在ac,bc两边中线的交点处
c.在ac,bc两边垂直平分线的交点处
d.在a,b两内角平分线的交点处
»